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Abstract 

Cellular functions are regulated by molecules that interact with proteins and alter their 

activities. To enable such control, protein activity, and therefore protein conformational 

distributions, must be susceptible to alteration by molecular interactions at functional 

sites. Here we investigate whether interactions at functional sites cause a large change in 

the protein conformational distribution. We apply a computational method, called 

dynamics perturbation analysis (DPA), to identify sites at which interactions have a large 

allosteric potential Dx, which is the Kullback-Leibler divergence between protein 

conformational distributions with and without an interaction. In DPA, a protein is 

decorated with surface points that interact with neighboring protein atoms, and Dx is 

calculated for each of the points in a coarse-grained model of protein vibrations. We use 

DPA to examine hundreds of protein structures from a standard small-molecule docking 

test set, and find that ligand-binding sites have elevated values of Dx: for 95% of proteins, 

the probability of randomly obtaining values as high as those in the binding site is 10-3 or 

smaller. We then use DPA to develop a computational method to predict functional sites 

in proteins, and find that the method accurately predicts ligand-binding-site residues for 

proteins in the test set. The performance of this method compares favorably with that of a 

cleft analysis method. The results confirm that interactions at small-molecule binding 

sites cause a large change in the protein conformational distribution, and motivate using 

DPA for large-scale prediction of functional sites in proteins. They also suggest that 

natural selection favors proteins whose activities are capable of being regulated by 

molecular interactions. 

 



D Ming & ME Wall Page 3 of 30 3/2/06 
 

Introduction 

Bochemical regulation is fundamental to the cell’s ability to maintain homeostasis, 

orchestrate developmental processes, and adapt to environmental changes. Regulation of 

protein activity is especially important for regulation of cellular functions. Because 

regulation is such an important feature in biological systems, it is interesting to 

contemplate its role in protein evolution. 

One important mechanism of protein regulation is allosteric regulation, in which 

molecular interactions influence protein activity through changes in protein structure. In 

traditional models of allosteric regulation, proteins adopt a limited number of 

conformations, each of which may have a different activity.1; 2 However, it has been long 

recognized that protein structures fluctuate in the cell, and that protein regulation 

involves changes in the full protein conformational distribution.3 Indeed, the 

conformational distribution is known to be a key determinant of protein activity,4 and is a 

key element in rate theories.5 The recent development of a theoretical framework to 

quantify changes in protein conformational distributions was motivated by these 

considerations.6; 7 

For allosteric regulation to work, the protein conformational distribution must be 

susceptible to alteration by interactions at an allosteric site. In addition, to prevent 

spurious activity in the absence of specific target molecules, newly synthesized proteins 

should be biased towards inactive conformations, and interactions in the active site 

should bias the protein towards conformations that are more active. Does Nature favor 

regulatable proteins? If so, then, as was suggested by a study of lysozyme,6 we expect 
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interactions in protein functional sites to cause a large change in the conformational 

distribution, facilitating the ability of molecular interactions to change protein activity. 

Here we examine 305 protein structures from the GOLD docking test set8 and 

investigate whether interactions at small-molecule binding sites cause a large change in 

the protein conformational distribution. We present a computational method, called 

dynamics perturbation analysis (DPA), to identify sites at which interactions have a large 

allosteric potential Dx, which is the Kullback-Leibler divergence between protein 

conformational distributions with and without an interaction.6; 7 We use DPA to analyze 

proteins in the test set, and determine whether Dx values for points in the neighborhood of 

ligand-binding sites are high compared to random points. We then develop a method to 

predict functional sites in proteins, and evaluate the method using proteins in the test set. 

The performance of the method is compared to that of a cleft analysis method. The results 

have important implications for prediction of functional sites in proteins, and in 

considering whether Nature favors regulatable proteins.  

Dynamics perturbation analysis 
 

Dynamics perturbation analysis (DPA) is based on a method previously used to 

analyze changes in fluctuations of a protein complex for random protein-ligand 

interactions.6 In DPA, a protein is decorated with M surface points that interact with 

neighboring protein atoms. The protein conformational distribution P(0)(x) is calculated in 

the absence of any surface points, and M protein conformational distributions P(m)(x) are 

calculated for the protein interacting with each point m. As in a recent study of allosteric 

effects in trypsinogen,7 the conformational distributions are calculated using a coarse-

grained model of molecular vibrations, and the distributions P
(m)(x) are isolated from 
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models of the protein in complex with the surface points. The Kullback-Leibler 

divergence Dx
(m ) between P(0)(x) and P(m)(x) is calculated for each point m6; 7 (Eq. (1)), 

and is used as a measure of the change in the protein conformational distribution upon 

interacting with point m. The measure Dx
(m ) is called the allosteric potential of the 

interaction of point m with the protein. 

For a given protein structure, evenly distributed surface points were generated by 

using the program MSMS.9 A probe radius of 1.5 Å and a triangulation density of 1.0 

vertex/Å2 were used in running MSMS. The vertex entries were used as surface points.  

Protein fluctuations were modeled using the elastic network model (ENM).10; 11; 12; 13 

In the ENM, alpha-carbon atoms are extracted from an atomic model of a protein, and an 

interaction network is generated by connecting springs between all atom pairs separated 

by a distance less than or equal to a cutoff distance rc. Each spring has the same force 

constant , is aligned with the separation between the connected atoms, and has an 

equilibrium length equal to the equilibrium distance between the atoms. Where possible, 

we used a cutoff value rc = 8.5 Å. In several cases, however, a value rc = 8.5 Å resulted in 

more-than the expected number of six zero-frequency vibrations. In these cases, the value 

of rc was repeatedly increased by 1 Å until there were only six zero-frequency modes. 

Calculations of Dx
(m ) are independent of the choice of . 

The interaction between the protein and a surface point m was modeled by connecting 

springs of force constant s between the surface point and all protein atoms within a 

cutoff distance rs of the surface point. The protein coordinates were not modified in 

modeling the interaction. To make the magnitude of the effect of the surface point on the 

protein larger (i.e., more comparable to what might be expected from an interaction with 
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an extended ligand), we increased both the force constant and cutoff distance with respect 

to the values used for protein atoms. The increases elevated the magnitudes of values of 

Dx
(m ) and were empirically found to enhance the statistical significance of the results 

below. In practice we found that statistically significant results were obtained using s = 

12  and rs = rc + 5.5 Å, which are the values that were used in the calculations below. 

Calculation of the allosteric potential 

 
The allosteric potential Dx

(m ) is defined as the Kullback-Leibler divergence between 

the unperturbed and perturbed protein conformational distributions, 

Dx
(m ) = d3Nx log

P(m ) x( )
P(0) x( )

 

 
 

 

 
 P(m ) x( ) , (1) 

where x describes the configuration of the N protein atoms in the protein, and P(0)(x) and 

P
(m)(x) are as defined above.  The significance of the Kullback-Leibler divergence has 

been previously discussed in the context of quantifying equilibrium density fluctuations 

and the nonequilibrium relaxation of polymer conformational distributions;14 and in the 

context of comparing protein conformational distributions with and without a ligand 

bound6; 7 Similar to the latter case, in the present context, Dx
(m ) is essentially the free 

energy change of the protein upon attaching the point m minus the mean relative energy 

of protein conformations in the presence of point m, where each energy is measured 

relative to the energy of the same conformation in the absence of the point. 

The distribution P(0)(x) is determined by the eigenvalues i
(0)2  and eigenvectors vi

(0) of 

the Hessian matrix H(0), whose elements are defined as Hij
(0)

x 0
=

2U (0) xi x j x 0
. U(0)(x) 

is the potential energy of a configuration x evaluated using the ENM in the absence of 
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surface points, and x0 is the equilibrium configuration of the protein. As we have 

previously shown,7 the distribution P(m)(x) is determined by the eigenvalues  i
(m )2  and 

eigenvectors v i
(m ) of a pseudo-Hessian matrix H (m ) , which has the same dimensionality 

as H(0) . H (m )  is obtained from the full Hessian H(m ) of the ENM in the presence of the 

surface point x s
(m ), which is decomposed as follows 

H(m )
=
Hp G

GT Hs
(m )

 

 
 

 

 
 . (2) 

The sub-matrix Hp couples protein coordinates, Hs
(m ) couples surface-point 

coordinates, and G couples coordinates between the protein and the surface point. In 

terms of these sub-matrices, the pseudo-Hessian H (m )  is given by 

H (m ) = Hp GHs
(m ) 1GT . (3) 

Eq. (3) was independently derived both in Ref. [7] and by Zheng & Brooks in Ref. [15]. 

The value of Dx
(m ) may then be calculated as6; 7 

Dx
(m )

=
i=1

3N

  log
 i
(m )

i
(0) +

1

2kBT
i
(0)2 x0

(m ) vi
(0) 2

+
1

2 j=1

3N

  
j
(0)2

 i
(m )2

v i
(m ) v j

(0) 2 1

2

 

 

 
 

 

 

 
 
. (4) 

Where the primed sums are carried out over all nonzero modes (all but 6 zero-frequency 

rigid-body modes). In Eq. (4), x0
(m )

= x0
(m ) x0  is the difference between the equilibrium 

conformation of the protein in the presence and absence of the point m; in the present 

study, we do not consider the surface point to have any influence on the equilibrium 

conformation, making the second term of Eq. (4) equal to zero. 
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Results 
 

Analysis of lysozyme 

 
We initially applied DPA to turkey egg-white lysozyme (Protein Data Bank entry 

1JEF16). The all-atom protein model was used to generate surface points. For normal 

modes calculations, alpha-carbon coordinates for the protein were extracted and used 

without modification for calculations both with and without surface points. Equation (4) 

was applied explicitly, requiring that the pseudo-Hessian in Eq. (3) be diagonalized for 

each point m. 

The calculation for lysozyme, which has 129 amino acids, took about 24 minutes on a 

3 GHz Pentium 4. Assuming diagonalization scales like the square of the number of 

residues, and the number of surface points scales like the 2/3 power of the number of 

residues, the calculation time should scale with the 8/3 power of the number of residues. 

Based on this back-of-the-envelope calculation, we expect that a protein with twice as 

many amino acids as lysozyme would take about 28/3  24 = 152 minutes. Indeed, 

application of DPA to a 260-residue portion of a NADH-dependent nitrate reductase 

(Protein Data Bank entry 2CND17) took 162 minutes, which is close to the expected 

length of time. Using first-order perturbation theory, we have calculated estimates of 

i=1

3N

  log
 i
(m )

i
(0) , which is just the entropic contribution to Dx

(m ),  in as little as 1/50 of the time 

required to calculate Dx
(m ). Such an approach shows promise in accelerating the below 

algorithm for prediction of functional sites (unpublished results). 
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Consistent with results obtained using an all-atom model of lysozyme,6 we found that 

values of Dx
(m ) are elevated in the neighborhood of the tri-N-acetyl-D-glucosamine (tri-

NAG) binding site (Fig. 1). Interestingly, the distribution of y =Dx
(m ) values is empirically 

well-fit by a probability density (y) given by 

y( ) =
1
e
y μ

e

y μ

, (5) 

which is an extreme value distribution of width  centered on μ (Fig. 2). The fit was 

obtained using standard nonlinear least-square methods. Later we describe how the 

extreme value distribution model was used to predict functional sites.  

Analysis of the test set 

 
We then applied DPA to 305 protein structures in the GOLD docking test set.8 

Calculations were performed in the same manner as for lysozyme (for the larger proteins 

in the test set, surface points were evaluated in parallel using several processors to 

decrease computation time). We wished to quantitatively assess the tendency for Dx
(m ) 

values to be elevated in the neighborhood of ligand-binding sites, and developed the 

following statistical analysis for this purpose. For each protein k, we selected the set of L 

surface points L within 6 Å of any non-hydrogen atom in the ligand. For each selected 

surface point l  L, we then calculated the fraction Pkl
+ of all surface points m that have a 

value of Dx
(m ) at least as high as Dx

(l ) in protein k. A total score for the set was calculated 

as 
  

zk = Pkl
+

l L

. The smaller the value of zk, the more elevated the values of Dx
(m ) are in the 

neighborhood of the binding site. To determine the statistical significance of a value zk, 

we wished to calculate the probability that a random selection of the same number of 
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surface points yields a score zk or smaller. This probability is very nearly the same as the 

probability P
-(zk) of obtaining a value zk or smaller for a product of L independent 

random variables uniformly distributed over the range [0,1], which is given by the 

distribution P z( ) = z
ln z( )

l 1

l 1( )!l=1

L

 (Appendix). We therefore used the following P-value 

to quantify the statistical significance of the collected values of Dx
(m ) in the neighborhood 

of a functional site: 

Pk = zk
ln zk( )

l 1

l 1( )!l=1

L

, (6) 

In 14 of the 305 proteins, the ligand was buried and was not close to any of the surface 

points. We used the remaining 291 proteins to evaluate the tendency for Dx
(m ) to be 

elevated in the neighborhood of the ligand-binding site. Results are illustrated in Fig. 3. 

For 95% of proteins, the P-value Pk  is 10-3 or lower, indicating that the elevation of Dx
(m ) 

in the neighborhood of functional sites is statistically significant. 

Prediction of binding sites using DPA 

 
We suspected that points with high values of Dx

(m ) could be used to predict the 

locations of functional sites, and developed an algorithm for this purpose. The algorithm 

works as follows. First, DPA is performed on a protein. Then, the statistics of Dx
(m ) values 

is modeled using an extreme value distribution. Points with significantly high values of 

Dx
(m ) are selected and are spatially clustered. The clusters are ranked according to the 

mean value of Dx
(m ) within the cluster, and points in the highest-ranked cluster are 

predicted to be associated with a functional site. Finally, residues in the neighborhood of 

the highest-ranked cluster are selected and are predicted to reside within the functional 
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site. We used this algorithm to predict functional sites for proteins in the test set and 

examined the overlap of the predictions with the ligand-binding sites. 

Consistent with the analysis of lysozyme, the Dx
(m ) values for the test-set proteins 

indicate that the statistics are well-described by an extreme-value distribution (Fig. 4). To 

select points with significantly high values of y = Dx
(m ), we selected an operating point C 

of the cumulative distribution c y( ) =1 e
e
y μ

, fitted μ and  using the actual distribution 

of Dx
(m ) for the protein, and calculated a lower threshold Y on Dx

(m ) as follows: 

Y = y C( ) = ln ln 1 C( )[ ] + μ . (7) 

We found that a value C = 0.96 yielded a high overlap of our predictions with the ligand-

binding sites in the test set (see below). 

Points with Dx
(m )

>Y  were clustered spatially using the Ordering Points to Identify the 

Clustering Structure (OPTICS) algorithm.18 Parameters were selected such that at least 3 

other surface points are within 6 Å of each point in the cluster. Using this clustering 

criterion combined with C = 0.96 resulted in at least one cluster for 287 of the 305 

proteins, yielding a prediction rate of 94% for the test set. The mean value of Dx
(m )

 for 

each cluster was calculated and was used to rank the clusters; for each protein, the rank-1 

cluster was identified as the cluster with the highest mean value. 

Protein alpha-carbons within 6 Å of any of the points in the rank-1 cluster were 

selected and were used to identify the set of RP residues RP that are predicted to reside in a 

functional site. These were compared with the set of RL residues RL that are in the 

neighborhood of the ligand found in complex with the protein in the test set: the 

intersection is the set of RP L residues RP RL found in both the predicted set and the 
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ligand set. The overlap of the predictions with the ligand-binding site was assessed using 

the precision 
  
RPI L RP  and the recall 

  
RPI L RL . (Detailed information about residues 

found near DPA clusters and ligand-binding site residues is available online at 

http://public.lanl.gov/mewall/dpa). 

Figure 5 depicts a typical rank-1 cluster in the neighborhood of a ligand-binding site. 

Statistics of the overlaps from the entire test set are illustrated in Figs. 6 and 7. As 

mentioned above, predictions were made for 287 of the 305 proteins. In 87% of cases 

(250 proteins), at least one predicted residue was in the ligand-binding site. The recall 

was at least 0.3 for 80% of cases, and was at least 0.5 for 76% of the cases (Fig. 6). The 

precision was at least 0.3 for 68% of the cases, and was at least 0.5 for 44% of the cases 

(Fig. 7). These performance measures depend on the value of the threshold C; for 

example, the dependence of the 0.5-level precision and recall statistics on C is illustrated 

in Fig. 8. The value C = 0.96 was chosen to yield a relatively high precision with little 

cost in the recall. 

The statistical significance of the overlaps was assessed using a null model in which 

surface residues were randomly selected. A list of all surface residues for a protein was 

found by selecting all residues whose alpha-carbons are within 6 Å of at least one surface 

point. The number RS of such residues was then used to calculate the probability of 

finding at least RP L residues in the ligand-binding site by randomly selecting RP residues 

from RS surface residues:  

  

Pnull =
RL

n

 

 
 

 

 
 

RS

RP

 

 
 

 

 
 

n=RPIL

min RP ,RL( )

=
RL!RP! RS RP( )!
n! RL n( )!RS!n=RPIL

min RP ,RL( )

. (8) 
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We calculated the P-value Pnull for all cases in which there was an overlap of at least 

one residue between the predicted residues and the ligand-binding-site residues, 250 

cases in all. Results are shown in Fig. 9. For 87% of the cases, Pnull is 10-3 or smaller, 

indicating that there is a statistically significant overlap. 

Prediction of binding sites using cleft analysis 

To provide some context for the performance of the DPA prediction algorithm, we 

compared the DPA algorithm to an algorithm based on cleft analysis. Cleft analysis was 

chosen because it is commonly used to identify ligand-binding sites, and, like DPA, it 

only requires structure information as an input, and does not require sequence 

information. The algorithm used was based on standard software for cleft analysis, 

SURFNET19 (including the programs SURFNET, SURFACE, SURFPLOT and MASK), 

which was originally developed to study the association of large clefts with positions of 

ligands on the protein surface. For rigorous comparison to our method, we used the 

output of SURFNET to locate residues near the largest cleft in a protein. SURFNET 

version 1.4 was used with default parameter values to analyze atomic coordinate files, 

resulting in a volume-ranked list of cleft locations. Then, SURFACE was used to analyze 

the largest cleft, and SURFPLOT was used to generate a set of surface points that 

surrounded the cleft. Finally, MASK was used to convert the coordinates of the surface 

points to Protein Data Bank format. The output of MASK was used to select residues in 

precisely the same manner as for clusters of points with high values of Dx
(m ) (Prediction 

of binding sites using DPA). 

Before using the above method to predict ligand-binding site residues in the GOLD 

test set, we confirmed that SURFNET yielded predictions of ligand-binding positions that 
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were similar to those found in an early application of SURFNET by Laskowski et al.20 

Indeed, examination of the position of the ligand for the set of 67 proteins from the 

Laskowski et al. study yielded the same results as those reported in Ref. [20], with only 

three exceptions: in structures of proteinase K (Protein Data Bank entry 1PEK21) and 

actylcholinesterase (entry 2ACK22), the ligand was found in the second-largest cleft 

instead of the largest cleft; and in a structure of  aconitase (entry 8ACN23), the ligand was 

found in the largest cleft instead of the third-largest cleft. These exceptions are most 

likely due to changes in the SURFNET software after the original study was conducted 

(Roman Laskowski, personal communication). 

We then applied the cleft analysis method to analyze the 305 proteins in the GOLD 

test set, yielding predictions for 303 of the proteins. Through qualitative visualization of 

the results, we found that the largest cleft often not only overlapped but also extended 

beyond the ligand-binding region (Fig. 5). This observation is supported by a statistical 

analysis of the predictions: the recall of ligand-binding residues for the cleft algorithm is 

high compared to that of the DPA algorithm (Fig. 6), and the precision is low by 

comparison (Fig. 7). Analysis using the null model supports these results (Fig. 9):  for 

62% of the 278 proteins with at least one overlapping residue, Pnull is 10-3 or smaller, 

compared to 87% of 250 proteins using the DPA algorithm. Application of the DPA 

algorithm to this test set therefore provided more statistically significant overlaps than did 

the cleft analysis algorithm.   

Discussion 
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We used dynamics perturbation analysis to examine a test set of hundreds of proteins, 

and performed a rigorous statistical analysis of the results. The major conclusion is that 

ligand-binding sites in the test set are located at control points that enable large changes 

in protein dynamics: for 95% of proteins, the degree of elevation of Dx
(m ) values in the 

neighborhood of functional sites would be expected only once in a thousand random 

samples. Most of the ligands in the test set are small molecules, and we expect that small-

molecule binding sites in other proteins would also tend to be located at dynamical 

control points. The implications of our results for sites of large-molecule interactions, 

such as protein-protein interactions, are currently unknown; the present study motivates a 

larger survey to examine the association of different types of functional sites with 

dynamical control points in a wide variety of proteins.  

Another major finding is that DPA can predict functional sites in proteins. We found 

that the DPA algorithm yielded predicted residues that had a significant overlap with the 

ligand-binding-site residues in the test set. There were some exceptions, however: in 37 

cases, residues in the neigborhood of the rank-1 cluster had no overlap with the ligand-

binding site. What can be said of these exceptions? Because proteins in the test set might 

have functional sites in addition to the ligand-binding site, we expect some of the 

predictions to have a high degree of overlap with alternative functional sites. Analysis of 

specific cases supports this idea: (1) streptavidin is in a dimeric form in which only one 

of the two monomers has a ligand bound; the rank-2 cluster is at the ligand-binding site 

on one monomer, and the rank-1 cluster is at an equivalent site on the other monomer 

(Fig. 10). (2) In a trypsinogen complex, the rank-2 cluster is at the ligand-binding site, 

and the rank-1 cluster is at an alternative site (Fig. 11). In other cases, like in porcine 
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synovial collagenase, the rank-2 cluster is at the ligand-binding site, and the rank-1 

cluster lies at the interface between two domains; by splitting the protein into two 

domains, the position of the rank-1 cluster moves to the ligand-binding-site (Fig. 12). In 

addition, as all of these examples suggest, rank-2 clusters are often associated with the 

ligand-binding site: 17 of the 37 cases are of this type, with an additional two cases in 

which it is the rank-3 cluster that is in the binding site, and one case in which it is the 

rank-4 cluster.  

Recently, in a study of a set of 98 enzymes, Yang & Bahar24 found that catalytic 

residues tend to be associated with structural hinge regions. For each enzyme, an elastic 

network model was used to simulate harmonic vibrations, and the two lowest nonzero-

frequency modes were analyzed. Catalytic residues were found to be associated with the 

sequence neighborhood of the residue whose mean amplitude of vibration over these two 

modes is the smallest in the protein, i.e., they tended to be located in a hinge region with 

respect to the low-frequency modes. Yang & Bahar24 reported similar temperature factors 

for models of liganded and unliganded enzymes, which at first glance appears to hint at 

an inconsistency with the present study. However, the quantity Dx
(m ) used here measures 

differences in the entire conformational distribution, whereas their study only considered 

changes in temperature factors. Because we have previously shown that Dx
(m ) can be large 

even when differences in temperature factors are small,7 the studies are not inconsistent – 

rather, they represent complementary approaches to quantifying the relation between 

protein dynamics and functional sites. It would be interesting to conduct a more detailed 

study of the relations among functional sites, structural hinges, and the dynamical control 

points that were the subject of this study. 
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The performance of the DPA algorithm in predicting ligand-binding sites for the 

GOLD test set compared favorably to an algorithm based on cleft analysis, yielding fewer 

true positives on the one hand, but fewer false positives and more statistically significant 

overlaps with ligand-binding sites on the other hand. However, it is important to note 

that, although SURFNET was developed to locate clefts where binding interactions might 

occur, it was not explicitly developed for the present application of predicting specific 

residues that contact the ligand.19  In addition, for comparison to the DPA algorithm, the 

cleft analysis algorithm used here only made use of structure information; recently, 

evolutionary conservation patterns have been used in combination with SURFNET to 

trim clefts and obtain a better overlap with the volume of a bound ligand.25 Finally, 

although we were able to reproduce published results using SURFNET, we have not 

rigorously tuned the cleft analysis algorithm for optimal performance in predicting 

ligand-binding residues. Therefore, it might be possible to achieve better performance 

than we have presented here. 

It is important to note that all of the analyses in this study were performed on protein 

structures obtained from a protein-ligand complex and were used without modification 

(e.g., energy minimization). Therefore, although the present results demonstrate the 

utility of DPA in predicting ligand-binding sites for protein conformations that are 

consistent with ligand interactions, the ability of DPA to predict ligand-binding sites for 

ligand-free protein structures that exhibit a significant mean conformational change upon 

binding a ligand remains to be tested. Future studies are needed to determine whether 

binding sites are detectable using the mean conformation of the ligand-free protein 

structure, or whether it will be necessary to consider alternative structures, e.g., by 
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performing DPA on an ensemble of structures sampled from simulations of thermal 

fluctuations. 

Looking beyond the present work, DPA will be able to contribute to the goals of 

predicting which ligands bind to a protein, predicting which residues in a binding site are 

functionally most important, and predicting what functions those important residues carry 

out.  For each of these tasks, initial application of DPA may be used to focus efforts on a 

small number of dynamical control points instead of the entire protein surface, saving 

computing time. In addition, DPA uses protein dynamics information that is 

complementary to information used by other protein structure and sequence analysis 

methods, and might therefore be integrated with other methods to increase the accuracy 

of protein-function prediction methods. It will be interesting to integrate DPA, cleft 

analysis, amino-acid conservation, and other types of information to make more accurate 

predictions about functional sites in proteins. 

Ultimately, detailed examinations of changes in conformational distributions will be 

required for a complete mechanistic understanding of allosteric regulation. More 

generally, however, proteins whose activities are allosterically regulated must have 

conformational distributions that are susceptible to alteration by molecular interactions. 

Our results support this general observation. They also motivate a perspective in which 

naturally occurring protein folds are controllable designs with intrinsically preferred 

locations for functional sites. Specific residues in these sites provide different protein 

activities and target specificities, but the overall architecture of the protein dictates their 

preferred locations to optimize their coupling to protein dynamics. In this perspective, the 
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greater the potential for interactions at a site to change the conformational distribution, 

the more likely it is that the site will evolve as a locus for controlling protein activity. 

In summary, the present evidence for the tendency of functional sites to be located at 

dynamical control points supports a scenario in which Nature favors regulatable proteins. 

It will be fascinating to see how this perspective evolves within the context of our 

deepening understanding of protein function and evolution. 
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Appendix 

The probability density z z( ) of the product z = Pi
i=1

N

 of N uniformly distributed random 

variables Pi over the range [0,1] is given by  

z z( ) = dP1 1 P1( ) dP2 1 P2( )
00

... dPN z P1...PN( ) 1 PN( )
0

, (A1) 

where x( ) is the Dirac delta function, and x( )  is the unit step function: x( )  = 0, x < 0; 

x( )  = 1, x  0. The delta function may be rewritten as 

z P1...PN( ) =

PN
z

P1...PN 1

 

 
 

 

 
 

P1...PN 1

, 
(A2) 

which, substituted into Eq. (A1), yields 

z z( ) = dP1 1 P1( ) dP2 1 P2( )
00

...
dPN 1

P1...PN 1

1
z

P1...PN 1

 

 
 

 

 
 

0

. (A3) 

The last step function in Eq. (A3) may be rewritten as 

1
z

P1...PN 1

 

 
 

 

 
 = P1...PN 1 z( ) = duN 1 uN 1 P1...PN 1( )

z

1

, (A4) 

which, through use of Eq. (A2) and substitution into Eq. (A3), yields 

z z( ) =
duN 1

uN 1z

1

dP1 1 P1( ) dP2 1 P2( )
00

...
dPN 2

P1...PN 2

1
uN 1

P1...PN 2

 

 
 

 

 
 

0

. (A5) 

Repeated application of Eqs. (A4) and (A2) eventually yields 

z z( ) =
duN 1

uN 1z

1 duN 2

uN 2uN 1

1

...
du1
u1u2

1

, (A6) 

which, when integrated, yields 
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z z( ) =
ln z( )

N 1

N 1( )!
. (A7) 

The probability P  z ( )  that the product z is less than or equal to  z  is then given by 

P  z ( ) = dz z z( ) =
0

 z 

 z 
ln  z ( )

n 1( )!

n 1

n=1

N

, (A7) 

which is the P-value expression used in the text. 
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Figure captions 

 
Figure 1. Visualization of lysozyme surrounded by 553 surface points. Lysozyme is 

rendered as a yellow ribbon, and surface points are rendered as spheres temperature-

coded according to the value Dx
(m ). Values of Dx

(m ) are elevated in the neighborhood of the 

binding site of the tri-NAG ligand (magenta wireframe). In this and other figures, 

RASMOL26 was used to visualize molecular structures. 

 

Figure 2. Distribution of Dx
(m ) values (labeled as AP values) for 4859 points on the 

surface of lysozyme (the number of points was increased in this case to evaluate the fit). 

The distribution is well-fit by an extreme value distribution with parameters μ = 23.07 

and  = 8.45 (Pearson correlation coefficient of 0.992). The fit is used to find the 96% 

upper bound of Dx
(m ) for the surface points; this bound is used as the threshold to select 

high-Dx
(m ) points for use in predicting functional sites.  

 

Figure 3. Statistical significance of elevated values of Dx
(m ) in functional sites. The 

distribution of P-values Pk  (calculated in bins of width 2 in log units) is shown for 291 

proteins in the GOLD docking test set. 

 

Figure 4. The distribution of Dx
(m )

 values for proteins in the test set is well-modeled 

using an extreme-value-distribution. Shown is a histogram of Pearson correlation 

coefficients calculated between the model and the data for all proteins in the test set. Also 
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shown is the histogram for just the subset of proteins for which ligand-binding-site 

predictions were made. 

 

Figure 5. Illustration of DPA and cleft analysis applied to the tyrosine kinase domain 

of human C-terminal Src kinase (Protein Data Bank entry 1BYG27). In each panel, the 

protein is represented using yellow ribbons, and the residues in the neighborhood of the 

ligand are represented using magenta ribbons and wireframes. Individual panels show, in 

green coloring, (Left) a thick wireframe representation of the ligand; (Center) spheres 

centered on points in the rank-1 DPA cluster; and (Right) a thin wireframe representation 

of the surface surrounding the largest cleft. The results illustrated here are typical of other 

proteins in the test set (Figs. 6, 7): using DPA algorithm, the recall of the ligand-binding-

site residues is 0.70, and the precision of the predicted residues is 0.42, while using the 

cleft analysis algorithm, the recall is 1.0 and the precision is 0.22. 

 

Figure 6. Recall of the ligand-binding-site residues from the predicted residues. 

Results for 287 proteins in the test set for which the DPA algorithm produced predictions 

(solid line) are compared to results for 303 proteins in the test set for which the cleft 

analysis algorithm produced predictions (dashed line). 

 

Figure 7. Precision of predicted residues with respect to the ligand-binding-site 

residues. Results for 287 proteins in the test set for which the DPA algorithm produced 

predictions (solid line) are compared to results for 303 proteins in the test set for which 

the cleft analysis algorithm produced predictions (dashed line). 
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Figure 8. Dependence of the DPA algorithm prediction performance on the threshold 

C. The fraction of proteins for which the predictions have at least 50% recall, and that at 

50% precision, are plotted for values of C between 0.8 and 0.99. Also plotted is the 

fraction of proteins for which a prediction is made for given threshold; there are fewer 

predictions for higher values of C. The value C = 0.96 yields a relatively high precision 

with little cost in either the recall or the total prediction rate. 

 

Figure 9. Statistical significance of the overlaps of predicted residues with ligand-

binding-site residues. For each protein, a P-value (corresponding to the probability in a 

null model of finding at least as many ligand-binding-site resides as does the prediction 

algorithm) is calculated; the resulting distribution of P-values is shown here. For the DPA 

algorithm (solid line), a total of 250 proteins in the test set were considered; and for the 

cleft analysis algorithm (dashed line), a total of 278 proteins were considered. (In each 

case, only proteins for which the algorithm yielded at least one residue in the ligand-

binding site were considered.) 

 

Figure 10. Biotin-binding protein streptavidin (yellow ribbons, Protein Data Bank 

entry 1SRH28). The rank-2 cluster (blue points) is closely associated with the the 2-[(4’-

hydroxyphenyl)-azo]benzoate ligand on one monomer (magenta wireframe), and the 

rank-1 cluster (green points) is near an equivalent binding site on the other monomer (the 

ligand at this site is absent in the GOLD test set but is present in the crystal structure). A 

similar result was found for Protein Data Bank entry 1SRF.28 
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Figure 11. Complex formed by bovine trypsinogen (yellow ribbon), bovine pancreatic 

trypsin inhibitor, (grey ribbon) and an Ile-Val ligand (magenta wireframe, Protein Data 

Bank entry 4TPI29). The rank-1 cluster (green points) is located near the interface 

between the protein and the inhibitor. The rank-2 cluster is located at the ligand-binding 

site. 

 

Figure 12. Porcine synovial collagenase (Protein Data Bank entry 1FBL30).  (Left) The 

N-terminal catalytic domain (yellow ribbon) is linked to a C-terminal domain (grey 

ribbon). The rank-1 cluster (green points) is located at the interface between the two 

domains. The rank-2 cluster (blue points) is associated with the ligand (magenta 

wireframe) in the catalytic domain. (Right) After isolating the catalytic domain, the rank-

1 cluster (green points) is located at the ligand-binding site.  
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